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Abstract. Within a Bayesian framework we consider a system that learns from examples. 
In particular, using a slatistical mechanical formalism, we calculate the evidence and two 
performance measures. namely the generalhtioo emr and the consistency measure. for a linear 
pereeptron trained and tesled on a set of examples generated by a nonlinear teacher. The teacher 
is said to be u n d r a b l e  because the student can never model it without error. In hC4 our model 
allows us to interpolate belween the known linear case and an unrealizable, nonlinear. case. A 
comparison of the hyperparameters which maximize the evidence with those that optimize the 
performance measures reveals that, when the student and teacher are fundamentally mismatched, 
the evidence procedure is a misleading guide to optimidng lhe performance measures considered. 

1. Introduction 

The analysis of supervised learning, or learning from examples, is a major field of research in 
which techniques from statistical physics have been successfully employed. In general, one 
has a model mapping (a student) parametrized by some N,-dimensional vector w and some, 
possibly noisy, examples 2, generated by the true mapping (the teacher). One attempts 
to optimize the student parameters with respect to the underlying teacher. This task is 
said to be unrealizable when the optimal student does not model the teacher without error. 
The training error E,(D) is some measure of the difference between the student and the 
teacher outputs over the set 'D. Clearly, E,@) is an unsatisfactory meaure of performance 
since it is limited to the training examples and very often we are interested in the students 
performance on a random example potentially but not necessarily in the training data; one 
measure of this performance is the generalization error (see, for example, Krogh and Hertz 
1992). 

Minimization of the training energy, with respect to the weights w, leads to the problem 
of over-fitting and in order to make successful predictions out with the set 2, (i.e. generalize) 
it is essential to have some prior preference for particular rules (Wolpert 1992). Occams 
razor is an expression of our preference for the simplest rules which account for the data. 
Thus, in the learning process one can attempt to minimize pE,(D) + yC(w), combining a 
measure of the performance on the data set and some complexity cost C(w) of the model. 
The inclusion of the complexity cost penalizes complex models which, in general, will be 
able to over-fit the data to a greater degree than simpler ones. If C(w) = w . w then y 
is termed the weight decay. The setting of the hyperparameters, p and y. controls the 
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learning algorithm. In this paper we will concern ourselves with the question of how to set 
the hyperparameters. 

One can also consider the supervised learning paradigm within the context of Bayesian 
inference. In particular, MacKay (1992a) advocates the evidence procedure as a 'principled' 
method of setting hyperparameters. Moreover, it is also a practical method since the 
evidence can be calculated from the data alone. Recently, there has been some debate as to 
the validity of this procedure (see, for example, Wolpert 1993, MacKay 1993, Wolpert and 
Strauss 1994). However, most of this debate has focused on the validity of the evidence 
procedure as an approximation to a 'hierarchical' Bayesian calculation as opposed to its 
effects on student performance. In fact, in some situations the evidence procedure does 
seem to improve performance (Thodberg 1993) whilst in others, as MacKay points out, it 
can be misleading (MacKay 1992b). We seek to explore these issues in a limited sense. 

In particular, we ask two questions: which performance measures do we seek to optimize 
and under what conditions will the evidence procedure optimize them? Performance 
measures, like the generalization error, are in some sense objecrive in that they indicate 
the extent to which the student has learned the underlying teacher. In order to investigate 
performance we consider particular classes of teacher and student. Theoretical results have 
been obtained for a linear perceptron trained and tested on data produced by a linear 
perceptron (Bruce and Saad 1994). They suggest that the evidence procedure is a useful 
guide to optimizing the learning algorithm's performance. 

In the remainder of this paper we examine the evidence procedure. in relation to 
performance, for the case of a linear perceptron learning a nonlinear teacher. In the 
next section we review the Bayesian scheme, introducing the evidence and the relevant 
performance measures. In sections 3 and 4 we calculate these quantities in the case where the 
data is generated by a nonlinear mapping and the student is linear. Finally, in section 5 we 
examine the effects of the resultant unrealizability on the efficacy of the evidence procedure. 

G Marion and D Saad 

2. Bayesian formalism 

2.1. The evidence 

We take E,(D) to be the usual sum-squared error and assume that our data is corrupted by 
Gaussian noise with variance 1/28 then the probability, or likelihood of the data (D) being 
produced given the model w and +¶ is 

~ ( ~ 1 8 .  w) E e-BE-JD). (2.1) 
In order to incorporate Occams razor we also assume a prior distribution on our models. 
That is, we believe a priori in some rules more strongly than others. Specifically we believe 
that 

~(wly) c( e-yc('"). (2.2) 
Multiplying these together we obtain the post-training or student distribution 

P(WID, y ,  8) E e--BE-B(D)-yc(w). (2.3) 
It is clear that the most probable model zu' is given by minimizing the composite cost 
function ,9Ew(D) + yC(w)  with respect to w. In this sense the Bayesian viewpoint 
coincides with minimization of this composite cost function by gradient descent (e.g. 
backpropagation). In fact, it should be noted that a stochastic learning (minimization) 
algorithm can also give rise to this post-training distribution, equation (2.3) (Seung et al 
1992). 
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The evidence itself is the missing normalization constant in (2.3). 

P(Dly, B )  = / n d w j  PPIB,  w)P(wly). (2.4) 
j 

That is, the probability of (or evidence for) the data set ( D )  given the hyperparameters p 
and y .  The evidence procedure fixes the hyperparameters to the values that maximize this 
probability for a given data set (MacKay 1992a). 

2.2. The performance measures 

Before defining our performance measures we must first introduce some notation. In general, 
we consider a teacher with output, y&), described by the conditional density P(y,lz) .  
This accommodates, for example, deterministic teachers whose output is corrupted by 
noise. Furthermore, the inputs z are N-dimensional vectors sampled with probability P(z). 
Thus a data set D = { ( y I ( z F ) ,  z@) : p = 1 . . . p) is generated with probability P(D) = 
U:=, P ( y , l z @ ) P ( z ’ ) .  In general, we will use the notation ( f ( z ) ) p  to denote the average 
of the quantity j ( z )  over the distribution P ( z ) .  However, we will use the short-hand (.)w 
to mean the average over the post-baining distribution P(wID, y ,  p). 

Many performance measures have been introduced in the literature (see, for example, 
Hansen 1993, Levin et ai 1989, Krogh and Hertz 1992). Here, we consider the difference 
between the average student output ( ~ ~ ( z ) ) ~  and that of the teacher y&), squared and 
averaged over all possible inputs z, and teacher outputs (i.e. over P(y&))  and finally, over 
all possible sets of data. Then, the generalization error 

6; = {(yt(z) - ( Y ~ ( z ) ) w ) 2 ) P ( R , . ) P ( . ) P ( D ) ~  (2.5) 
This is equivalent to the generalization error given by Krogh and Hertz (1992) up to a 
teacher-dependent constant, namely the variance in the teacher output over P (y&) . 

Another feature we can consider is the variance of the student output, y s ( x ) ,  over the 
student distribution ( ( y s ( z )  - ( y s ( z ) ) w ] z ) w , p ( z ) .  This gives us a measure of the confidence 
we should have in our post-training distribution and could be estimated if we could estimate 
the input distribution P(z). Bruce and Saad define the consistency measure as the difference 
between this variance and the generalization error (Bruce and Saad 1994). Here we extend 
this definition to include the case of unlearnable rules, by adding the asymptotic value of 
the generalization error (i.e. adding 6; = lim,,,sg, where a = p/N.). The consistency 
measure 6, is now defined by 

6, = ( l Y s ( 4  - ( Y S ( z ) ) w J Z ) w , P ( , ) ~ ~ ~ ~  - (Eg - €2). (2.6) 

In the limit (Y -+ 00 6, tends to zero, even though the generalization error may not be zero. 
We regard 8, = 0 as optimal since then we can estimate our expected error, from the 
variance of our student output. 

The fact that the quantities (2.5) and (2.6) are averages over the data is just analytical 
artifice. For example, in an experiment we would wish to make predictions based on a 
single data set. In other words we would be interested in the data-dependent generalization 
error E,@) and consistency measure S,(D). Unfortunately these performance measures 
(averaged or not) can only be calculated if we assume we know more about the teacher 
than simply the training examples. However, the evidence can be calculated exactly from 
the data alone, although it does embody our assumptions about the noise process and prior 
distribution. Arguably, minimization of E ~ ( D )  is the ultimate goal of supervised learning, 
It is, therefore, desirable to know when the evidence procedure minimizes this quantity. 
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3. The model 

G Marion and D Saad 

In our model the student is simply a linear percepuon and the input dimension N equals 
the model dimension N,. The output for an input vector xP is given by 

In contrast, our teacher is a nonlinear mapping which we refer to as an n-teacher because 
it is a mixture of n linear component teachers. The Qth component teacher is COrNpted by 
Gaussian noise of mean zero and variance U& The resulting conditional output distribution 
for the n-teacher is 

where P(yt lz ,  Q) M exp([yt - wn . x12/2u~), P (=IQ) is N(&, u&)t and PA is chosen 
such that rn=l PA = 1. The input distribution is P(z) = rn=t P (Q)P(zlQ). 

One way of visualising the n-teacher mapping is as the average over the conditional 
distribution P(yt]a). Figure 1 displays some examples of a 2-teacher with onedimensional 
input vector. Figure 1 curve (i) shows the linear case whilst (ii) shows the average 
of two linear teachers when the distributions P ( z [ Q )  are the same, again the average 
output is a linear function of the input. Finally in figure 1 curve (iii) the distributions 
P ( z l Q  = 1) and P(zlQ= 2) are both centred on the origin but have different variances; 
the average output is a nonlinear function of  the input. In fact, for the general case, where 
the distributions, P ( z [ Q ) ,  have different means and variances, in the largeN limit the 
input space is divided between the component teachers with each one representing a linear 

-1.0 -0.5 0.0 0.5 1.0 
X 

Figure 1. A %teacher in ID: The avenge Output { y t ) p ~ ~ r )  (i) when the component teacher 
vectors are aligned, (ii) when they are misaligned but ux, = ozl a d  (iii) with ox, # and 
with the teachers misaligned. 

t Here we are using N(32. uz)  to denote a normal distribution with man 5 and variance oz. 
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section of the mapping. In this way a nonlinear teacher is constructed, in a piecewise 
linear fashion, with n segments. As n grows we can steadily improve our approximation 
of arbitrary piecewise linear functions. 

Given this model a data set 2) = r,=,[(w". z? + q?, z?) : /LQ = 1 . .  . p n } .  The 
variables qp are drawn independently from a Gaussian distribution with zero mean and 
variance U; whilst the zg are drawn independently from P(z1.Q). The range of the index 
f in is from 1 to pn where on average pn = pP& 

Adopting C(w) = w . w we can now explicitly write the evidence in terms of 
these random variables and then perform the integration over the student parameters 
(over weights). Taking the logarithm of the resulting expression leads to In P(Dlh, p )  = 
- N f ( D ) ,  where we have introduced I = y / p .  The quantity f(D) is analogous to a free 
energy in statistical physics. This analogy has been noted by others. for example (Neal 
1992). The expression for the free energy is of the form, 

1 1 l h 0 1 p 1  -f(D) = -In- +-ln-+-ln27r+-lndetg+-pjgjkpk-~ 
2 n 2 x 2  2N N (3.3) 

where 

Here we are using the convention that summations are implied where repeated indices occur. 
The performance measures can be calculated from the evidence: 

(3.4) 

2 

6 - -%trg)Pm, - (Eg - E?) (3.5) - 2 N p  
2 - ptu2 where, ( W j h  = pkgkj and fJxa - n 

Due to the sampling assumptions of our model all these quantities are functions of 
random variables, that is of random data sets. To proceed analytically we must perform an 
average over these data sets (i.e. over the distribution P(D)) .  

4. Thermodynamic averages 

In order to perform these averages we are forced to consider a particular n-teacher. We 
choose the 2-teacher (n = 2) with an input distribution with zero mean, En = 0. The 
method used to calculate the average is an extension to that used by Hertz and his co- 
workers (Hertz et al 1989). Using this we can calculate the data average of the free 
energy, f ,  in the thermodynamic limit. That is, as N ,  p + 00 with 01 = p / N  = constant. 

As we discussed earlier, considering the average over all possible sets of data is 
somewhat artificial in that we could calculate f(D) and would be interested in the 
generalization error for our learning algorithm given a particular instance of the data. 
However, in the thermodynamic limit, due to our sampling assumptions these quantities, 
as functions of a particular set of data D. coincide with their averages over all data sets. 
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We will discuss the effects of the thermodynamic approximation in more detail elsewhere. 
However, the essential point is that the variances, over data sets, of quantities like the free 
energy or the generalization error are of the order 0 ( 1 / N ) .  Thus, in the thermodynamic 
limit, the fluctuations, from one data set to the next, vanish. 

We now calculate these thermodynamic averages. After the average over the noise 
variables we are left with the average over the input distribution. In particular, we need to 
calculate ((g)), ((Aag)) and ((A2gAl)). where the double brackets refer to averages, in the 
thermodynamic limit, over the input distribution. The details are relegated to the appendix, 
where equation (A.7) defines N G  = tr((g)) and ((nag)) and ((A2gAI)) are defined by (A.4) 
and (A.5), respectively. 

G Marion and D Saad 

The averaged free energy f can now be written 
l h o r S l  1 f = --In- - - I n -  - -1n2rr - -((lndetg)) + ba;(P,b - YlG) 2 l Z 2 H 2  2N 

+pa:(P& - Y2G) +BG(a;,k91 + U ; ~ ~ Y Z +  WIWZD,) (4.1) 
the generalization error as 
cs = p:a;,a: + P;a&a;> + P%: + P&T~ 

-ZP,%;~(U+~;,  + %e,,.)c - 2 ~ & 7 ; ~ ( * 2 4 ~  + Irrle,)c 

whilst the consistency measure becomes 

and we have defined 

The variable Dw is a measure of the Euclidean distance in weight space between the two 
teachers whilst, a:, measures the magnitude of teacher R and 0, is the overlap between 
the two teachers. We note that in two limits we recover the learnable, linear teacher, 
case. Specifically, if the probability of picking one of the component teachers is zero or 
if both component teacher vectors are aligned. We can now examine the evidence and the 
performance measures for our unlearnable problem. 

5. Results and discussion 

5.1. The performonce measures 

Firstly let us consider the performance measures. The asymptotic value of 66 for large LY is 

Similarly, also for large CY, 

(5.2) 

In the limit of infinite CY, 18.1 tends to zero and c r  = P ~ P ~ a ~ , a ~ 2 D w / a ~ c r  + PA& This 
is the minimum generalization error attainable and reflects the effective noise level with a 
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component due to the mismatch between student and teacher which vanishes when the two 
component teacher vectors are aligned (D ,  = 0). This minimum error corresponds to a 
student weight vector with components wk = (Pfa:,w: + P4aj2w:)/u&, which is simply 
an appropriate mixing of the component teacher weights. 

Another limit which we can examine is the case of an unregularized student distribution 
( y  -+ 0). In this case we must be careful as the response function G is ill defined for 
a c I. In fact, the consistency measure diverges in this region. However, in this limit for 
a e 1 the generalization error is 

(5.3) 

which clearly shows a divergence, as a approaches unity from below, if we have noise on 
the examples and/or the component teacher vectors are not aligned (Ow > 0). The function 
5 represents the remaining, non-diverging, component. This divergence is also seen as a 
approaches 1 from above. If we expand cg about a = 1 the first term is 

In accord with standard results (for example, Krogh and Hertz 1992, Dunmur and 
Wallace 1993). if there is no noise and D ,  = 0, the generalization error is proportional to 
1 - a for a c 1 and zero for a > 1. Figure Z(a) shows the generalization error in the 
zero-y limit. The case of a noiseless linear teacher is included for reference. In this case, 
the addition of noise causes .sg to diverge at a = 1. We also observe the same effect when 
we have a nonlinear teacher. As the scalar product between the component teachers reduces 
( D ,  increases) the divergence becomes more rapid. Thus, the unlearnability of the teacher 
acts as an effective noise on the examples. 

We also see this effect in figure 2(b) which shows the generalization error for finite y 
plotted against a. In this case also, the addition of unlearnability has a similar effect to 
the addition of noise on the examples. The peak in the generalization error, for small but 
finite y .  can be regarded as the precursor to the divergence at a = 1 as y + 0 discussed 
above. The appearance of this maxima can easily be understood; if there is no noise or y 
is large enough then there is a steady reduction in cg (figure 2(b) curve (i)), however, if 
this is not so then for small a the student learns the effective noise and the generalization 
error increases with oc. As the student gets more examples the effect of the noise begins to 
average out and the student starts to learn the rule. The point at which the generalization 
error starts to decrease is influenced by the effective noise level and the prior constraint. 
We note here that the idea that unlearnability acts as an effective noise is not new (see, for 
example, Sollich 1994b). 

Figure 2(c)  shows the consistency measure for y + 0, for 1y c 1 this diverges even in 
the learnable noiseless limit. Again unlearnability acts as an effective noise. As we shall 
see in section 5.2.1, in  this limit, the consistency is optimized by the evidence procedure 
for the linear case only. A nonlinear case is shown in figure 2(c)  curve (iv) where the 
temperature is set by the evidence procedure but the true optimal consistency measure is 
actually zero. 

Finally, figure 2(d) shows the absolute value of the consistency measure versus a for 
finite y .  Again we see that unlearnability acts as an effective noise. The post training 
distribution variance reduces as a increases. For a few examples with y small or with large 
effective noise the student distribution narrows until 8, is zero. However, the generalization 
error is non-optimal since the students have simply learned the effective noise. The position 
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0 1 2 3 4  
a a 

a 4 5  0 1 2 3 4  
a a 

Flgure 2. The performance measures: @aph (a) shows the generalization mor  vems a for 
zem y .  (a)  C w e s  (i) and (ii) are the realizable u s e  without noise and with noise, respectively: 
(E) is unlearnable case where we can see that the unlwnabitiiy LWIS qualitltively in the same 
manner as noise. (b) Shows cI for finite y .  C w e s  (i) and (ii) are learnable scenarios in the latter 
case with noise: (iii) shows that the effect of ridding unlearnability is qualitatively the same 3s 
adding noise. (c) Shows 16.1 for y + 0, note that for U c 1 the consistency measure diverges. 
Graph (i) shows lhe learnable linea case: (ii) shows the unlwmable but liiw case and (iii) is 
the nonlinw case; (iv) shows the effect of setting the leaming temperature to T,; the evidence 
optimal temperature. In lhis latter case the optimal value of the consistenn/ measure is 18cl = 0. 
(d)  Shows the modulus of the consislemy e m r  versus o for finite y.  Curves (i) and (ii) are the 
learnable u s e  without and with noise respectively; (id) is an unlearnable case with the same 
noise level. (a) for zero y. (b) fg for finite y.  (c)  4 for zero y and ( d )  6, for finite y .  

of the zero of the consistency measure is a reflection of the trade-off between the effective 
noise and the weight decay described above (figure 2(d) curves (ii) and (iii) show the result 
of varying the effective noise). As CY increases further I8.l begins to increases to a local 
maximum, it then asymptotically tends to zero. If there is no noise or y is large enough then 
IS,] steadily reduces as the number of examples increases (as shown in figure 2(d) curve (i)). 

5.2. The evidence procedure 

We now turn to the evidence and, in particular, to the assignments of the hyperparameters we 
can make from it. We define ,6&) and y&) to be the hyperparameters which maximise 
the evidence with respect to fixed y and p respectively. The evidence procedure picks 
the point in hyperparameter space where these curves coincide. Furthermore, we define 
pg and y," to be the solutions to l ~ + m $ l y = c o n ~ t  = 0 and limar+m~l~=wnst3nt = 0, 
respectively. In what follows we shall refer to the linear regime as the case when ox, = U,, 

or when D, = 0 and ut = uz. 'Ihis is because the average teacher output is then linear. In 
contrast, when D, z 0 and U,, # U- and the average teacher output is an N-dimensional 
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3 . 3 5 4  ..\ w 

1 2  3 4 5 6 7 8 9 1 0  
a 

Figure 3. Optimal temperatures in the y -f 0 model (i) The evidence procedure estimate To, 
and that which optimizes the wnsistency measure Th coincides in the linear regime. In the 
nonlinear regime (ii) shows the dependence of Tcv on a and (ii i)  shows thaf of Th. 

analogue of curve (iii) in figure 1, we shall speak of the nonlinear regime. We also note 
that if o;, # ux2 and U, # uz then the noise is not constant across input space. 

5.2.1. The y + 0 limit. The simplest case is the unregularized limit where we have only 
one hyperparameter (B )  to optimize. In this limit, for a < 1, the evidence is maximal for 
T = 1/,4 = 0 whereas, for a > 1, the evidence optimal temperature (Tev) is finite as shown 
in figure 3 curves (i) and (ii). In fact this transition in behaviour is analogous to the phase 
transition found by Bruce and Saad (1994). In the regime a < 1 there is not even enough 
data to specify the perceptron weights and in consequence, there is no option but to believe 
the data completely. Thus, the evidence optimal learning temperature is zero. However, for 
a > 1 and increasing we can make steadily better estimates of the noise in the examples. 
In the regularized case (see below) this phase transition does not occur because our prior 
belief provides the additional information required to estimate the noise from the data even 
for a < 1. 

Let us contrast the evidence procedure assignments with those that optimize the 
consistency. We note that 141 is independent of the learning temperature for a < 1. 
We also comment that the generalization error is a function of h only and so, in the limit 
y + 0, is independent of p.  In the large-cY limit T,, + TeT where 

(5.5) 

In the linear regime Tsv is constant (Va =- 1) as shown in figure 3 curve (i) whereas in the 
nonlinear regime figure 3 curve (ii) shows that there are finitea effects. Furthermore, it 
can be shown that Tw optimizes the consistency measure in the linear regime only. That 
is, the evidence procedure optimizes the consistency measure if U,, = ux2 or if D, = 0 and 
U, = u2. The effect, on IS,l, of setting the learning temperature to zv in the nonlinear case is 
shown in figure 2(c) curve (iv) where the optimal IS,l is actually zero. The learning temper- 
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ature which minimizes the consistency (T&) is shown for this case in figure 3 curve (iii) (this 
is the same case as figure 3 curve (ii) which shows Tev). In the limit a + 03, Ts, becomes 

G Marion and D Saad 

Contrasting this with (5.5) above we note that TC and Tey are the same only in the linear 
regime. 

Thus, in summary, for y + 0 in the linear case the evidence procedure optimizes the 
consistency measure (T, = Ta, = constant Va s.t. a > 1). However, for a nonlinear 
teacher or noise that varies across the input space, even in the large-a limit, it does not. 

5.2.2. The y > 0 case. 
limit T&y is still given by (5.5). whilst 

We now turn to the regularized case. In this instance in the large-a 

These asymptotic assignments can be understood intuitively. Thq setting of Tey retiects 
the average noise in the examples (P:a: + P;o:) and the noise due to the unlearnability, 
P~P~a~,o:D, /o&,  discussed earlier. The weight decay term is not as easy to interpret. 
However, in the linear regime we have N/ZyE = Iw'P; + wzPJz;  the variance of the 
prior is set to be the square of the normalized average teacher vector magnitude. Both these 
assignments can be considered optimal in the sense that they are the evidence estimates in 
the limit of infinite data. 

In order to assess the evidence procedure for finite y and a we are forced to optimize 
the free energy and the performance measures numerically. I n  addition to ,Se&') we define 
&(y )  and & ( y )  to be those assignments which optimize, for a given y ,  6g and 8,. 
respectively. 

In the learnable linear case (D, = 0 and 01 = a*) the evidence procedure assignments 
of the hyperparameten (for finite a) coincide with A and yeT and also optimize cg and 
6, in agreement with Bruce and Saad (1994). This is shown in figure 4(a) where we plot 
&(y ) ,  & ( y )  and &(y ) .  The point at which the three curves coincide is the point (in 

0.5 I 

Figure 4. The evidence procedure: optimd p venu y .  (a) Linear case. (b) Nonline% m e .  
In both gnphs the p which optimizes evidence & ( y )  is curve (i). that which optimizes the 
generalization e m  & ( y )  curves (ii) and that which optimizes lhe consistency measure p&(y )  
curve (iii). In (a) the evidence pmcedure picks the point. in the y-8 plane, where dl three 
C U N ~ S  coincide. In (b )  the evidence procedure point coincides only with curve (i). (a)  Linear 
cnse, (b) nonlinear me. 
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the p-y plane) which the evidence procedure picks. However, we note here that if one of 
the hyperparameters is poorly determined then the evidence procedure is a poor guide to 
optimizing performance even in the linear case. 

The results for an unrealizable rule in the linear regime (Ow > 0 and uz, = ux2) 
are qualitatively the same as in figure 4(a), but with an increased effective noise level 
due to the variance of the teacher output. The evidence procedure sets p = pgs which 
takes into account this effective noise, and sets y = which reflects the effective size 
of the weights. The evidence assignments still optimize the generalization error and the 
consistency measure. 

The situation in the nonlinear regime is shown in figure 4(b). In this instance the 
parameters picked by the evidence procedure neither minimize cg nor 6,. nor do they set j3 
and y to their asymptotic values. In fact, in analogy to the unregularized limit the evidence 
procedure assignments are cy-dependent. 

Any Bayesian scheme must make assumptions concerning the process generating the 
data (i.e. assumptions concerning the teacher) and, in general, such assumptions will not 
be valid. In this paper, in the nonlinear regime, we have explicitly violated the linearity 
assumption of our Bayesian scheme and so perhaps it is not surprising that the evidence 
procedure breaks down. In fact, in the nonlinear regime, if we have different real noise lev- 
els associated with each teacher (U,  # U*) this mismatch, between the evidence procedure 
assignments and those which optimize performance, increases. In this case we have not only 
violated the assumption that the teacher is linear but also that of our single Gaussian noise 
model. However, when ux, = ux2 and D, t 0 then the evidence procedure is optimal de- 
spite the fact that the data is produced by a mixture of linear rules which our student can not 
model. In general then, it is not easy to assess the effects of the violation of our Bayesian as- 
sumptions. One further question we might ask concerns robustness; given that the evidence 
procedure does not optimise performance in the nonlinear regime how far from optimality is 
it? We simply note here that we have explored this issue elsewhere (Marion and Saad 1995). 

6. Conclusion 

In this work we have analysed a simple system which enabled us to examine the efficacy 
of the evidence procedure for the case when the student was not sufficiently powerful to 
model the teacher. Such a situation may well arise in a real world application since we 
rarely know the form of the teacher and, as discussed in the introduction, learning is a 
trade-off between minimizing student complexity and modelling the teacher on the data set. 

In particular, we have examined the generalization error, the consistency measure and 
the evidence procedure within a model which allows us to interpolate between a learnable 
scenario and an unlearnable one in which our model serves as the basis for a genera1 
nonlinear teacher. We have seen that the unleamability acts as an effective noise on the 
examples. Furthermore, we have seen that the evidence procedure optimizes performance, 
even in the unlearnable case, if the average teacher output is a linear function of the input. 
However, for a nonlinear teacher (and a linear student) the evidence procedure breaks down 
in that it fails to optimize the performance measures. Whether or not such a breakdown of 
the evidence procedure is a generic feature of a mismatch between the hypothesis (student) 
space and the teacher space is a matter for further study. 
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Appendix 

In this appendix we calculate the averages over the input distribution, P ( z ) .  required in 
section 4. 

We note that P(z) = P(zIS2 = 1)P: + P(zlS2 = 2)P; and in what follows ((g)1)2 
= ((g)2)1 = ((g)), where (...)I and (...)z refer to averages over the distributions 
P(zlS2 = 1) and P ( z l 0  = 2). 

Firstly let us rewrite g-' as g-I = A, t r where r = A2 + AI and I is the identity 
matrix. Now we can average over the distribution P(zlS2 = 1). This step is similar to the 
calculation, in Hertz et a1 (1989), of the average of the matrix (AI t 11) wvith AI replaced 
by the matrix r. 

G Marion and D Saad 

In the thermodynamic l i t  we obtain, 

We can then rewrite (A.l) as 

(g)iAz = I -M)i - (g) l&.  (A.2) 
Now we wish to perform the average over the second distribution P(zlC2 = 2) but the 

last term in (A.2) is potentially problematic. However, iffollowing the diagrammatic method 
of (Hertz etal 1989) we examine the diagrams for this term we see that the 'crossings', or 
interactions, between (g), and CI are O(l/N2) and can be ignored in the thermodynamic 
limit. Thus, we can average the two factors independently, ignoring any interaction between 
them. This leads to 

(-4.3) 
Using the matrix identity gAz = I - Ag - Atg and defining W I  = (&)2 we obtain 
((gA1)) = Wl((g)). If we perform these averages the other way around and define 
Y2 = (&)I  we find the analogous expression. Thus, in general we have 

((sAn)) = %&I)) . (A.4) 

((gAz)) = I - A(@)) - ((g))Wi )) . 

Now by multiplying (A.2) by A,, avera,+g over the distribution P(zlS2 = 2) and using 
the matrix identity A2 gA2 = A2 - AA2 g - A2 gAt we obtain 

((A2 = *t*z((S)) . ( A 3  
We now have all the averages we require in terms of the average ((g)). To evaluate this 

64.6) 
This shows that ((g)) is diagonal, in this case, where the distributions P (zlQ) are normal 
and have zero mean. Taking the trace gives us an implicit equation for the response function 

quantity, firstly, we average the matrix identity gA1 = I - Ag - A2 g which gives us 

P I  + % + A)(tg)) = 1. 

e= ' (@ N ( g)). Namely, 

which resolves into a cubic in G.  Now since the variance of the student output over the 
post training distribution is u&G,G/2,9 then C must be positive. Fortunately, we can show 
that only one of the three solutions, to the cubic, is positive. We also, note here that this 
response function could be calculated using the more general method of Sollich (1994a). 
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